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ABSTRACT

The evaluation ofhe g- measurements dahe critical isochore of Sfperformed
with the newly developed scanning-radiation-calorimeter during the Ger8pacelab
MissionD-2 is presentedduring cooling in the 1-phase region ungey-conditions the
"piston effect” avoidsignificanttemperature andensity inhomogenities ithe fluid. In
the 2-phase region both phasesametinuously subcooled inthe metastable region by
the "pistoneffect” causing a permanent nucleatiorswiall droplets andubbles, which
keeps thesystem near its thermodynanequilibrium. For the slowestooling run of
dT, /dt = -0.06 Kh' at T, the ¢-data are distorted bgamp rate effects only for
|(T-T.)/T| < 3 1. Using a rangshrinkingprocedure for theletermination of the as-
ymptotic region the siple powerlaw is validfor |(T-T,)/T.| < 1.6 10. For thefitting
procedure the theoretical constraiots o’ and B = B’ areapplied. Fittingthe data in
the asymptotic region to the simple power law yields the expanen0,11033332 and
the amplituderatio A=/A* = 1,919:334, in goodagreement with values tiie renor-
malizationgroup theory (RGTandotherexperiments fothe 3,1-universality class. The
validity of the powerlaw extended byhe first Wegner correction is found to B€T-
T)/T < 1 10°, giving similar valuedor the fitting parameters. Testinthe two-scale-
factor universality by combininghe critical amplitude withthe correlatioriength gives
R« = 0.284+0.018, in agreement with theoretical estimates and other experimental values

for fluid systems.

KEY WORDS: critical phenomena; isochoiieat capacitymicrogravity; sulfur hexa-

fluoride.



1 INTRODUCTION

During theD2-Mission a scanning-radiation-calorimeter was employed to measafe ¢
Sk on thecritical isochore during heating and coolingns. This instrument has espe-
cially been developed to mettte experimental requirements under micrograviig-j
conditions. The cooling runs allowed undistortgdneasurements in thenmediate vi-
cinity of the critical point, where earth-bound experimeatginfluenced bythe implicit
effect of gravity.

The technique of using cooling rufe the ¢-measurement near tlegitical point re-
sulted fromthe analysis ofthe experiments performed durirtge D1-mission. In these
experiments, theffect of isentropic heating ("piston effect") causeghificanttempera-
ture differences inthe fluid due to thedifferent isentropictemperaturecoefficients
(8T/dp)sof both phases. Under 1g-conditions thieé®mogenitiesare diminisheanainly
by theeffect of buoyancy convectiothe limiting factor of optimized ¢-measurements
(cell height H = Imm, heatingrate dT, /dt = 3.6 mKE™") is theimplicit effect of gravity.
Under pg-conditions, however, theffect of isentropic heating becomes dominant and
leads to a decisive hysteresis gicourses obtained by the comparisonheting and
cooling runs.

Furthermore, during cooling the "pist@ffect” determineshe fluid behavior, though
here theeffect of isentropic heating keetiee fluid near its thermodynamiequilibrium.
Approaching thecritical point the temperature andensity inhomogenities caused by
heat conduction during cooling are reduced byitkeeasing influence ahe piston ef-
fect due to thencreasing thermal expansion coefficiedp/pT)p. During cooling into
the 2-phase region both phases are subcaalethuously intahe metastable region by

the "piston effect". Here homogeneauscleationoccurs in both phases abdbbles in



theliquid phase and droplets in the gaseous phase are created conBtasfipe emul-
sion of bubbles androplets provides a large surface afobrt paths for the heat and
masstransportduring the phase transition. Therefore flbil is kept neaits thermody-
namic equilibrium resulting in an almost undistorted cv-measurement.

Due to thelimited spaceavailablefor this paper we refer to [1] and [2] for a more de-
tailed explanation of these phenomena and further informati@mut theexperiments
performed during the D2-Mission. lhis paper wegive only ashortsummary of the
main topics of the gmeasurement and present the results disclssion otthe final
evaluation.For details onthe construction and operation of tkeanning-radiation-
calorimeter we refer to [3].

2 EXPERIMENTAL DETAILS

We used a spherical cell madeaapperwith a diameter 0fl9.2 mm, produced in an
electrolytic coating process. The cell is equipped with 4 thermistors, 1 ovalireend 3

at different radii inside the cell to measure the temperature distribution in the fluid.

The sample cel(stage 0) is heated and coofeksivelythrough heaexchange with the
surrounding stage 1 mainly by radiation. About 10 % of the total heat exchange is carried
out byheat conductiowia the eletrical connections between the cell and stage 1. The

isochoric heat of the sample is determined by the energy balance of the cell leading to:

U U
To-T) + P(T O 1
® (1) = E‘ 0D - celn
|
0 Rth,01(T) dt 0 u

The temperatureéifference T-T, is measured directly between a thermistostage 1
and the cell thermistors, the determination of the temperature coursgt @t the cell is

based on the measurement of the temperatuaed the differenceyIT;:



dTy _ d(Ty + To- To)

) dt dt

With a wall thickness 00.35 mm the totajmechanical and thermal) compressibility of
the @ll is 610° K" . The spherical cell provides an excellgatio of the total heat ca-
pacity and that ofhe fluid of 77% at T-T = -0.1 Kand66% at T-T = +0.1 K respec-
tively. The cell volume determined by several measurementscis \3,7626 cm
10.24%. Thesample mass isdmq = 2.773 g+0.22%,yielding a sample density @f =
737.2 kg® +0.27%. Thesample puritywas determined by the manufacturer to be
99.998% mainly CH,, N,, H,O. Themaximumleakrate of the celmeasured by weigh-
ing the filled cell over several days was less than 0.0514&/.

The thermal resistancen(T) was measured at several temperatures in a temperature
region of 12 K around JI. The standard deviation tie fit of these data to aubic
function wadess thar0.02 %, the accuracy ofy8:(T) is 0.47%.The heatingpower of
the thermistor P(T) considered in EqQ. (1) is less than 1% for all ramp rates.

The heat capacity othe cell G was determined after empty the cell to be
Cc = 2.03 K™ with a heating and a cooling run. Thmall temperaturecoefficient of
copper is neglected in the evaluation, the estimated accuragyi®2@.

All thermistors were calibrated at #ifferent temperaturdevels inthe range of 15 K
spanning T with two Pt-25 sengs, integrated in stage 1. These sensorsalibrated

by the manufacturer Rosemount tariK. To reduce the drift of the thermistotisey
were aged wificially yielding a stability ofdT/dt < 0.5 mKyear'. The resistance-
temperature-curve of each thermistor was fitted with the Steinhart-Hart-Equation, the
mean standard deviation betwetataand fit is less thaf.5 mK for themeasurement of

To-T1and 2.2 mK for Trespetvely.



With thatthe accuracy of the, -data above Jis calculated to babout 3-4.5% for the
ramp rates dJ/dt = —0.4 and —0.06 K" respectively. Below Jthe accuracy is about
1.5-2.5% for d¥ /dt = —0.4 and —0.06 K" respectively. The precision tfie ¢-data
used for theanalysis isabout 1% in the conigte temperature region except fOrT, | <
10 mK.

3 REGRESSION ANALYSIS AND DISCUSSION

To obtain the asymptotibehavior ofthe specific isochoricheat we used thsimple
power law for data fitting:

(3) cy =AY +B

Here A/A" are the amplitude values below and abovecthieal temperature J T is the
reduced temperature (T#T.), a the critical exponent and Bhe regular background
term. Ouranalysis followshe predictions o§calingtheory that theeritical exponent
hasthe same value below and above (& = a’). In accordance to theenormalization
theory we appliethe constraint B = B’ andincethe sample densitproved to meet the
critical density of Skwithin 1% we appliedhe same criticatemperature for the data
above and below (T = T.). Therefore we didhot treat the databove and below T
separately but fitted both branches simultaneously.

Equations of thdorm asEq. (3) arenon-linear, non-analytic functions which have a
strong correlation between the parametéhss meanghere are a lot of parameter sets
describing the data almost equally well. This is elucidatesbbgnalysisvhere ashift of
the critical temperature of only 0.1 mK yield a change of the exponent vad®of 4%
without asignificant change ofhe least square sum. Tonfirm the fitting procedure

finds the globalminimum ofthe least squareumX, independent of thitting algorithm



Eq. (3) is treated as andar function bythe following procedure. Anumber of fits is
performed withfixed values of T anda for each fit. By the variation of both parameters
with a certain grid size and within reasonableitSrthe sméest value ofX, of all fits
indicates the best fit function for this data set.

3.1 Final Data File

The final data set includekatafrom several cooling runs performed unggrconditions
cleared up by thdatawhich are distortedbviously by rampateeffects. The results of
heating runs wereot included since edatameasured during heating ruase signifi-
cantly influenced by ramp rate effects in a wide temperature region argund T

Fig. 1 shows that the-clata obtained bgooling undeg-conditions are distortednly

in the immediate vicinity ofthe critical point in spite ofthe comparatively high ramp
rates. It must benentioned thathe totalmission time didnot allow to realizesmaller
ramp rates over aide temperature range. A double-logarithmic representation (see [1])
reveals that a rampate effect inthe g-course of the slowest cay run underpg-
conditions is obviousnly in the temperature region ¢(T-To)/T.| < 310°. The ¢-data

of a run with the ramp ratT, /dt = —0.4 K" have a significardistortiononly between
—110° < (T-To)/T. < 2[10°. The comparison with,aneasurements of pufieids using

a scanning-ratio-calorimeter elucidates the advantage of the cooling techniqugginder
conditions. Even with heatingites ofdT, /dt = 3.6 mK™* the ¢-data aretypically dis-
torted by ramp rate effects in a region of |(JAT| < 3.510° ([4], [5], [6]).

The final data set includes more than 70.000 data points, mainly from the slowest runs, in
a temperature region 8.5 K < T-T; < 2.4 K. Due to thelecreasing rampate of the
guasi-exponential runisoth the datalensity and noise alata of thefinal data set in-

crease with decreased distance fran T
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Fig. 1 Isochoric heat capacity measured underg-conditions at different coolingates.
For comparison &, -course measured undeg-donditions at a coolingate of
dTy/dt=—0,1 K" is given.

3.2 Data file averaging

For datafile averaging we made use thie fact that in aouble-logarithmic representa-
tion of ¢, versust = (T-T.)/T. the g-slope is approximately linear. Each decade of
divided in j segments arfdr each segment the coverddta are averaged to; Nata
points (¢; , T;). A reduced data set was createtsisting 02500 €, , T)-pairswhich is
availablefor further use by others (see Fig. 2). Tditferent uncertainty of edata ob-
tained with different rampates wasot considered resulting in a higher weighting of

data obtainedavith the slow runs compared those of the faster runs (see below). In



order toobtain a reasonable CPU-time for the regresaitaiysisthe 2500 pairs were
reduced in the same manner to 40 data points per decade of

The statistical uncertainty of thg-data dependmainly onthe ramprate and the dis-
tance from T sincethe cell temperature is not actively colligd but depends on,c In
addition the unreguladynamics ofthe phase transition in the 2-phase region changes the
noise ofthe data. Therefore it isot possible to assign a certastandard deviation to a
certain run or a certain ramp rate.

Instead anndividual uncertainty or rather weightingfactor for eachdata point is de-
termined forthe analysisconcerning the asymptotleehavior of ¢ In addition the in-
creasing temperature uncertainty of each data point approachmgonsidered:

2

ac\,,i
oT

2 2
4) 0j” =0¢,i ¥

c

Theindividual uncertainties,,  are obtained as thieviation betweethe ¢-dataand a
smoothing cubic spline applied the g-data inlogarithmic form. With that a bias effect
on theindividual uncertainties is avoided to tigeeatespossibleextentsince asmooth-

ing spline represents the data without a functional dependency.
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Fig. 2 Final ¢ -data setonsisting of2500 (¢ , T-T)-pairs covering the temperature
region —=3.5 K< T-T< +2.4 K in a Inearrepresentationlhis data set isvailable
for use and further evaluation by others.

In addition smoothing the,@ata in alogarithmic form provideshe advantage that the

increased noise when approachingc@n be smoothedut by a "hardr" spline without
imposing a bias effect in thaegion where the,acoursehasthe maximumincrease. Es-
pecially near T a wrongestimation ofthe individual weightingfactors wouldinfluence

the result of the asymptotemalysis significantlyThe spline parameter S, representing
the weight of eacldata point for the splinétting, must be chosen ithe appropriate
way. For higher values of $he smoothing spline change into an interpolating spline un-
derestimating the real standard deviation of the data. On the cobhd@asynallvalues of

S lead to a distorted representation of theatirse and weighting factors respectively.



In Eq. (4) the temperaturencertaintyor.rc is estimated to be 500K, the factor
(8c,i/dT) is taken fromthe smoothingpline. The weightingfactors are determinealith
the data setonsisting 02500 points. For thagainreduced data set used in the regres-
sion analysighe appropriateveightingfactors where determined by averagthg indi-
vidual factors in the same way as mentioned above.

3.3 Determination of the asymptotic region

A rangeshrinkingmethod was used to determitie extension of the asymptotic region
where the simple powdaw is validfor the description of edata. Fotthis task the criti-
cal temperature Jused in thditting procedure is dixed parameter, for theetermina-
tion of the bestfit function inthe asymptotic region:Tis used as a free parameter. From
the g-course measuredith the slowest cooling rurd{, /dt = —0.06 K&™") the critical
temperature of the sample was found to pe 318.680 K+ 0.5 mK.

The outerlimit T, was varied betweer® < T < 210°, theinnerlimit Ty, is fixed
for all fits to Tmi, = 300°. The largest fitting regiomcludes203 data points, themallest
region81, 40above and 41 below.TThe rangeshrinkingwas realized by discarding a
data point from above and belowdfter each fit.

Fig. 3 showsX,*courses obtained bihis method usingour different valuesfor the
spline parameter S for thestimation ofthe weighting factors. It is obvious thax,?
reaches aearlyconstantevel between 1.05 andl.2 for fm.{ < 1.610* independent of
the value of S orrather theweighting factors used fofitting the data to thesimple
powerlaw. A value ofX,” near unitystands for both good estimation ofthe data un-
certainties and good suitability of the sinple powerlaw for describingthe data irthis

temperature region.
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Fig. 3 Semi-log plot ofhe reduced chi-squakg,’ as a function ofhe reduced tempera-

ture T obtained byvarying the fitting region (,range-shrinking“) anthe standard

deviation ofthe data. The standad#viation ofthe final data set wadetermined

by fitting the data by amoothing cubic spline. Tond the best estimate for the

standard deviation dfhe data the spline parameter S wasied between 0.5

("smooth" ,nearly interpolating spline) ar@001 ("hard"spline). Independent of

the standarcdeviation used foffitting the data to the sipte power law X,

reaches aearlyconstanwaluefor [t| < 1.610* indicatingthe extension of the as-

ymptotic region of the edata.

As shown in Fig. 4 théit parameters;, A/A" and B increase in similar waywhen the

outer limitTy.xis decreased and reach nearly constant values.fg«|1.610* too. For

these reasons the extension of the asymptotic regi@ufay, -data of Skis fixed to f|

= 1.610%



As shown in Fig. 3 form > 1.610* X,* increases for largditting regions depending
on thevalue of S. The more S is increaghd moreX,” goes up. Increasing tiparame-
ter Sresults in a decreased smoothing of dagaresulting in an underestimation of the
actual standard deviation. On the contrary decreasigyes a ,harder” splingevhich
tends to a systematic deviation betwelea spline and the,course and a@ecreasing
significance to findhe asymptotic regiorzor these reasons the spline parameter S = 0.1
is chosen for the estimation of the individual uncertainties for the complete data set.
To find out any dependencies die extension of the asymptotic region onitiver and
outer limit of the data set the limits were varied betweBa%< [t < 810° and 110*

< [tma] < 1.610° respectively. The values afand theamplituderatio show annsignifi-
cant range obnly 1% whert,, is varied, thelependency onm.y is about 2-4 %erify-
ing an appropriate determination of the asymptotic region.

In comparison, emeasurements of GQ4] yield anextension of the asymptotic region
of [t| = 4.910*, ¢-measurements of a binary mixture [7] resultjrr|610*. We assume
that thissmalldifference idue to thalifferentproceduregstimatingthe standardevia-

tion of the data and the criterion applied to the determination of the asymptotic region.
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Fig. 4 Semi-log plot ofhe parametera, A/A" and B as a function d@he reduced tem-
peraturet obtained byvarying the fitting region ("range-shrinking"). Thplotted
courses were obtained with S = 0.1, the resultstloervalues of Sare inprinci-
ple the same. Independent of the standBrdation used fofitting the data to the
simple powelaw all parameters reachrearlyconstanwaluefor [t] < 1.610* in-

dicating the extension of the asymptotic region of theata.

3.4 Analysis in the asymptotic region

The data set betweefil8°® < [t| < 1.610* consists of 118ata points, Tis now treated
as a free parameter between 318.678 K and 318.682 K wititeawal 0f0.05mK. To
determinethe besfit parameten is varied as mentioned above betw&ed6 and 0.15
with an interval 0f0.0001.This analysis containing200fits yieldsthe critical tempera-
ture to T. = 318.6801 K, 0.1 mkdigher thanthe fixed valueused above. The best fit
parameters for the asymptotic region are:

a =0,1105+0,004



A" = 69,43+ 0,06 J/MolK

A~ =133,2+ 0,07 J/MolK

B = 19,92+ 0,20 J/MolK

AT/AT=1,919

with X, = 1.135 as the global minimum. The uncertainties given for the parameter repre-
sent thediagonal elements dhe errormatrix. They donot represent thabsoluteerror
since they depend dahe statistical uncertainty of thgata used in thanalysis. Amore
realistic estimation othe uncertainties igiven bythe determination of theonfidence
level of the estimated parameter (see i.4).[8Ve determined the range of parameters

which meet

2 2
Xv - XV,O
2
XV,O

(5) <FpN-p) .

X,? is the reduced squaseim of a certairparameter setX, ¢ is the global minimum
value ofthe besfit function. For the degree dfeedom N — p = 109N number ofdata
points in the asymptotic region, p number of parameters of the simple power law) the 5%
F-distribution parameter isobs = 2.46 and the 1% HRstribution parameter isok; =
3.50.

Fig. 5 showswo projections of constan,” into thea-T-parameter space representing
the 95%and 99% confidence level othe bestfit parameters above. The ploieans a
95% (99%)probability thatthe real parameteraluesare within these contours. In the
plot theglobalminimum (X,* = 1.135)with T. as a free parametergs/en ancthe local
minimum (X,* = 1.197)with the critical temperaturefixed to T. = 318.680 K.This
analysis yields the following estimation for the uncertainties of the expanémg ampli-

tude ratio A/A™ and the regular background term B:



a = 011033933
A~/A* =1919:024
B = 19.92322 J/MolK

The plot reveals the strong correlation betweercthieal exponent anthe critical tem-
perature. Thalight change fronthe fixed value of T to thevalue found irthe analysis

with T; as a free parameter of only 0.1 mK causes a chamgefid %!
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Fig. 5 Contours of constat,” in the T-a parameter space representing the 95 §F
and 99 % (ko1 confidence levelor the values ofa and T. determined in the as-
ymptotic region. The globahninimum of the fit with T, as a free parameter is
marked by X (T is found to be 318.6801 K), tth@cal minimumobtained with T
fixed to 318.680 K is marked by O.

Fig. 6 shows theleviations ofthe reduced data skbm the besftiit parameters deter-

mined inthe asymptotic region. Thebbsence of any unbalanced deviatitmsboth the



databelow and above cIverifies agairthe besffit function to be agoodrepresentation
of the experimental data in the asymptotic region. The increasing systematic deviations of
both coursedrom the bestfit function beyond1| = 1.610* elucidate that theimple

power law must be extended by additional terms outside the asymptotic region.
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Fig. 6 Deviations ofhe reduced data skom the besfit function inthe asymptotic re-
gion measured in percentage units. Beyond the asymptotic region bogtd#ta c
for T<T. (marked by x) and T>T(marked by ) show aignificant increase of

the deviation to the best fit function of the asymptotic region.

3.5 Analysis beyond the asymptotic region
To describeghe databeyondthe asymptotic region the simgdewerlaw is extended by

the 1. Wegner correction [9]:



(6) Cy = A_/+|T|_a %+ D_/+|T|A%+ B

The temperature region where thi®del is agood reprsentation of the data is deter-

minedwith a rangeshrinkingmethod as used for the asymptotic regfeor. this analysis

the exponend is set to the theoreticahlue0.5 [10], thecritical temperature ifixed to

T. = 318.680 K, the other parameters of Eq. (6) are treatbdeaparameters. Thiner

limit is fixed again att},| =310°, the outer limit is varied betweefld* < [t <1107

After each fitthe data set fitted is reduced thgcarding adata point from above and
below T.. Theanalysis yields a monotonicaljecreasing<,” until [Ty = 1.010° , in

the temperature region,k < 1.010° the reduced chi-square reachawearlyconstant
course a,’ = 1.2. This indicates both a good estimation of the standard deviation and a
good suitability of the extended model for describing the data in this temperature region.
To find the besfit function of Eq. (6) for tma < 1.010° the amount of 175 points in

this temperature region is fitted arying a from 0.08 to 0.13 (step 0.0001) and T
between 318.679 K and 318.681 K (stef mK), the exponend is fixed to 0.5. The
analysis yieldsX,” = 1.189 and theritical temperature = 318.6802 K, only0.1 mK
higher than the value determined in the asymptotic regionvdloe ofthe critical expo-

nent showsnly a smallchange compared to the béstfunction in the asymptotic re-

gion to a = 011138342 The parameter A A" and B show a distinchift of about

10%, theamplituderatio yields to beA~/A* = 2.01}3:32, clearly withinthe 95%confi-

dencelevel of the value inthe asymptotic region. The estimated uncertairgresn for
the exponent and thamplituderatio represent the 95 @eonfidence levefor the best fit

function. The increased degree of freedom wiittng the data to Eq. (6)esultsinevi-



tably in an increased uncertaintytbe besfit function compared to the uncertainties of

the best fit function of Eq. (3).
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Fig. 7 Deviations of the reduced data set fithin besfit function usingthefirst Wegner
correction. Fort| >1M10° both the ¢data for T<T (marked by ) and T>T
(marked by +) show significant increase dhe deviation tothe besfit function

of this region.

Fig. 7 shows the deviations of the compléd¢a sefrom the besfit function inthe tem-
perature regioomentioned above. The plotrifies thatthe asymptotigpower law ex-
tended by the first Wegner correction ig@drepresentation of the data set fortmay
< 1.010° . Forlarger temperature regions the pigarly reveals increasing deviations

for both the g-course above and below T



To describehe datebeyondi| > 1.010° Eq. (6)was extended by the secowkgner

correction:
@ ey = AT B+ DA + A E B

The completedata set of 254 data pointghich covers a temperature region of about
[t| = Z10% was fitted to this function withthe critical temperaturefixed to
T.=318.6801K and the exponehfixed tothe theoreticalalue 0.5. The@therparame-
ters of EqQ. (7) were treated as free parameters, the analysis was performed by varying the
critical exponent betwee0.08 <a < 0.13with a step ofAa = 0.0001. Theanalysis
yields slightly changed parameter valubsit arelative high value othe reduced chi
square ofX,” = 2.14indicates thaEq. (7) is aninsufficient representation of the com-
plete data sefThis is confirmed by Fig. 8 whictepresents thdeviations between the
completedata setand the bestit function in the complete temperature region. The ¢
data in the 2-phase regibelowt < —210° show asignificant deviation fronthe best

fit function, inthe contrary, theleviation ofthe 1-phase data dwtincrease 1% for the
complete temperature region.

In addition instead dEq. (7) thefollowing modelused by [5] and [7] was applied to the

analysis of the complete data set:
(8) ¢y = A OB+ Dt AE+ B PR + B

The higher value oK,” = 2.26indicates that this is worse representation of the com-

plete data set than Eq. (7).
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Fig. 8 Deviations othe reduced data s&bm the bestfit function usingthe second
Wegner correctionFor T > 2[10° the ¢-data for T<T (marked by ) show a
significant increase dhe deviation tothe besfit function of thisregion. In con-
trast thedeviations of gdata above J(marked by +) are below 1%dicating a

good representation by the model.

With this analysis it imot clear whether the reason for the obserdedations between
our g-dataand themodel extended bthe second Wegner correctibes inour g-data
or in the model. Thanalysis of high-precisiomeasurements dhe isochoric heat of
CO, by [4] yielded agoodsuitability of Eg. (7) in a temperatumegion of —510% <1 <
2,7110%. Though aview onour g-data of does nathowany significant misbehavior in
this region. Abias effectdue to the average proceduras to be excluded since the

analysis of the original data set shows the same deviation in this temperature region.



3.6 Two scale factor universality
To check thevalidity of hyperscalinghe parameters of the béstfunction validfor the
asymptotic region wereombined withthe correlatioriength for Sk. Theuniversal fac-
tor was déermined with

1
ébr DAL EE:)C EREd

9) Rg =¢&o

resulting in R = 0.284+0.018with & = 2.01610™° m [11], R=56.92 @'K™ , p. as the
sample density,kthe Boltzmann constant and d =3. As showmable 1 this value is in
good agreement with experiments on other 3,1-systems and theoretical calculations.
3.7 Comparison with other experiments and theory

The statisticalanalysis inthe asymptotic regiowyields the critical temperature of the
sample to be I= 318.6801 K, the estimated uncertainty with 9%a8afidence level is
+0.4/-0.9 mK (see Fig. 5). The accuracy of the temperature measuremeaiitased
to be+10 mK. This value matchdke position of the ,singularity measured with the
slowest cooling run within a few 1/10 mK. However, the value is about 50 mK below the
values of experiments using high quality samgfes. a 5.4-SE (purity 99.9994 %) the
measurement of [12}ields T. = 318.730 K andg. = 742.1 kgh*, for a 5.5-SF the
measurements of [13] and [14] results in=T318.736 K,p. = 738.8 kdgh® and T =
318.723 K,p. = 734.4 kdh* respectively. The comparison thfe measured ;Tand the
quality of the sample fluidfor several experiments itme literature shows that. Te-
creases with decreasimgiality sincethe impurities are mainly Q,, N, CH,. Since the
density of our sample matches the critical density @iv@thin 1%thedifference in T is
causedonly by impurities.According to theanalysismentioned abovéhe critical tem-

perature of ousample indicates thahe quality of our sample is bettethan 3.8. The



original quality measured e fluid manufacturer was 4.8. We suspect that the addi-
tional impurities come from the fact that the cell coutd beevacuated atigh tempera-
tures before the filling due to the soft soldered thermistors in the cell.

Several investigations reveal tithe behavior ofthe critical exponentt do notchange
significantly evenfor impurities of a fewpercent of thesample volume ([6], [15]).
Therefore annfluence ofthe smallamount ofimpurities ( <0.02 %) in oursample on
the universal parameters can be definitely excluded.

Table 1 gives a comparison of curve fittingtlre asymptotic region betwedns work
andotherexperiments anthe results of theoretical calculations. It is shown that the val-
ues of thecritical exponenti and theuniversal amplitudeatio A/A™ determined in the
asymptotic region are igood agreement both witlether experiments and theoretical
results for 3,1-systems. The extension of the asymptotic region determithesivwiork

is smaller compared tmtherexperiments. At first glandde estimated uncertainties cf
and A/A" of thiswork seem to beatherhigh compared to the results of the other ex-
periments, which give uncertainties afout 2 to 5 % for theritical parametersThis
difference is caused lifie following reasons: First it has to be considenddch method

is used to estimate the statistical uncertainties.dldgponal elements d@he errormatrix
normally yields smalleuncertainties than the determination by tbefidence level. The
first method is i.e. used by [5], [7] and [16]. Secorttily estimated uncertainty depends
on the extension of the region fitted by the sinpueverlaw. The larger thditting re-
gion the moradatawith a smallerstandard deviatioareincluded inthefit resulting in a
smaller uncertainty ahefit parameter. As mentioned abahe uncertainties depend on
the strong correlation between thiting parametergsee Fig. 5). Edwards [4] deter-

minesthe critical temperature of theample by independent tintenstantmeasurements



with an uncertainty obnly +0.15mK! Therefore Edwards can reduce the estimated un-
certainty determined by theonfidence leveimethod of about 10% to thalues shown
in Table 1.
A more precise determination of ih thiswork would have been possibbaly by much
smaller ramprates reducing the rounding of thgsingularity when passintie critical
point. However, the slowest ramp rates realized durin@#blission made uskoth of
the technical limits of the apparatus and the time resources of a Spacelab Mission.
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Table 1: Comparison dhe curvefitting in the asymptotic region dhis work to other

experiments and to theoretical calculationgh#f critical parameters. References
of the theoreticalaluesare: a) [18], b) [19], c) [20], d) [21], e) [22], f) [23], Q)
[24], h) [25], i) [26].

System| Model fitting region a AIAY Re Reference
11 1,919-0,27/+0,24 0,284 hi k
Sk ¢, = A'[T+B | 3M0°< | < 1,610° 0,1105 ,919-0,27/+0,24 0,28 this wor
-0,027/+0,025 + 0,018
0,273 5
S|, sATR["+B  |3,85105< | <10° | 0098001 | 18%0,02 [5]
0,263 16
Sk c :A+"|T|'“ +B 510° < Il < 1,610° 0,1075£0,0054 | 1,8& 0,06 [16]
CO |, = Ao +B" |a00S<p<ga0® | 0:124+0,005 | 1:860,06 [6]
1 1 17
C0: ¢ =A"[*+B |400°< | < 510° 0,105 /90 [17]
259 4
+ 0,016
EA- 0,26 7
3 ¢, = A[® +B | 7010° < | < 6,q10° 0,107+ 0,002 | 1,7% 0,03 [7]
D0 +0,03
HTS 0,112: 0,008 |1,96” 0,2547 | see labeling
+ 0,007
RGT 0,110+ 0,008 |1,82-2,089" 0,2699 | see labeling
31 0,1094:0,0008" +0,0008"

System
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